在A,B,C三个门中隐藏着1件奖品,当游戏者选择1个后,由裁判在剩下的2个门中选1个空着的门打开,并询问游戏者是否更改答案为另1扇门。那么,此时游戏者怎样选择更容易获得奖品呢?
解答:
A | B | C | D | |
1 | 1000000 | [A,B,C] |
![]() |
|
2 | 0 | 0 |
![]() |
|
3 | for A1 | =int(rand(3))+1 | =int(rand(3))+1 |
![]() |
4 | =B1(B3) | =B1(C3) |
![]() |
|
5 | =B1\C4 | =B5\B4 |
![]() |
|
6 | =int(rand(C5.len()))+1 | =C5(B6) |
![]() |
|
7 | =(B5\C6)(1) |
![]() |
||
8 | if B4==C4 | >A2+=1 |
![]() |
|
9 | else if B4==B7 | >B2+=1 |
![]() |
|
10 | =A2/A1 | =B2/A1 |
![]() |
A10中不更改答案获奖的概率如下:
B10中更改答案后获奖的概率如下,可以看出,在这种游戏中,更改答案后的获奖可能性差不多提高1倍: